35

Reaction Conditions and Performance	Our Data (Table 5)	Literature data*
GHSV, h ⁻¹	3750	180
T, ° C.	280	200
P, MPa	5.4 MPa	0.1
Catalyst	Rh—Mn/SiO ₂	Rh ₂ MnO ₄ /SiO ₅
CO Conversion, %	24.6	20.2
Selectivity	_	
CH ₄	38.4	42.3
CO ₂	0	3.0
MeOH	3.9	2.0
EtOH and C2 Oxygenates	56.1	20.4
Other HCs	1.6	32.3

*S. Ishiguro, S. Ito, K. Kunimori, Catalysis Today 45, 197-201, 1998 (Table 1)

As can be seen, the use of a microchannel reactor allows us to operate at high throughput to achieve high conversion and improved selectivity.

TABLE 6

Performance Comparison of Structured Rh—Mn/SiO $_2$ Catalyst with Identical Powdered Form in a MicroChannel Reactor

	Run numbers	
	Run EC-02	Run ET 32
Catalyst Configuration	Rh—Mn/SiO ₂ coated on FeCrAlY felt	Powdered Rh—Mn/SiO ₂
GHSV, h ⁻¹	20,000	2700
Conversion, mol %	20.4	22.7
Selectivity, %	_	
CH ₄	36.5	31.1
CO ₂	2.3	4.7
C ₂ ⁺ HCs	3.2	1.7
Alcohols and C2+Oxy	58.0	62.4
Specific Activity, mmolCO Converted/g · h	46.0	26.8

 $H_2/CO = 1:1, T = 300^{\circ} C.$

We claim:

1. A method of synthesizing alcohols from CO or CO₂ ⁴⁵ comprising:

flowing a reactant gas mixture comprising H₂ and CO or CO₂ into contact with a catalyst;

wherein the catalyst comprises a Pd—Zn alloy dispersed on alumina; and

forming an alcohol or alcohols.

- 2. The method of claim 1 wherein the alcohol or alcohols formed in the step of forming an alcohol or alcohols consists essentially of methanol.
- 3. The method of claim 1 wherein the catalyst further comprises a Fisher-Tropsch catalyst and wherein the alcohol or alcohols formed in the step of forming an alcohol or alcohols comprises higher alcohols that contain 2 or more carbon atoms.
- **4**. The method of claim **3** wherein the alcohol or alcohols formed in the step of forming an alcohol or alcohols comprises a mixture of alcohols in which ethanol is the principle alcohol.
- **5**. The method of claim **3** wherein the catalyst comprises 65 the Pd—Zn alloy dispersed on alumina catalyst and a Fisher-Tropsch catalyst that are mixed together.

- **6**. The method of claim **3** wherein the catalyst comprises a first section that consists essentially of the Pd—Zn alloy dispersed on alumina catalyst, and a second section that comprises the Fisher-Tropsch catalyst.
- 7. The method of claim 3 wherein said step of flowing is controlled so that the contact time is less than 1 second.
- 8. The method of claim 7 wherein the catalyst is disposed in a reaction channel having a width of 5 mm or less, and further wherein the temperature variation across the catalyst 10 is 10° C. or less.
 - 9. The method of claim 6 wherein the first section and the second section are disposed in a reaction channel having a width of 5 mm or less.
- 10. The method of claim 6 wherein the reactant gas mixture contacts the first section before contacting the second section.
 - 11. The method of claim 1 wherein the catalyst comprises crystalline ZnO.
 - 12. The method of claim 2 wherein the reactant gas mixture comprises CO, and CO reacts with $\rm H_2$ to form methanol.
 - 13. The method of claim 1 wherein the reactant gas mixture comprises CO and ${\rm CO}_2$.
 - 14. The method of claim 1 wherein the reactant gas mixture consists essentially of CO and H_2 .
- 15. A method of synthesizing ethanol or higher alcoholsfrom CO₂ comprising:

flowing a reactant gas mixture comprising CO₂ and H₂ into contact with a catalyst;

wherein the catalyst comprises: (a) Pd—Zn alloy dispersed on alumina and (b) a Fischer-Tropsch catalyst; and forming ethanol or higher alcohols.

16. A method of synthesizing an alcohol comprising: contacting hydrogen and CO over an alcohol catalyst in a microchannel;

removing heat into a heat exchanger; and converting at least 20% of the CO into products with a selectivity to C_2^+ oxygenates of at least 30%.

- 17. The method of claim 16 comprising a selectivity to ethanol of at least 30%.
- **18**. The method of claim **16** wherein the catalyst is disposed in a flow-by configuration in the microchannel.
- 19. The method of claim 16 wherein the catalyst comprises an alcohol synthesis catalyst and a Fischer-Tropsch catalyst.
- **20**. The method of claim **19** wherein the alcohol synthesis catalyst and Fischer-Tropsch catalyst are mixed together.
- 21. The method of claim 19 wherein the alcohol synthesis catalyst and Fischer-Tropsch catalyst are sequentially arranged in the microchannel.
- 22. The method of claim 16 wherein the catalyst comprises Rh and Mn disposed on silica, titania, or zirconia.
- 23. The method of claim 22 wherein the catalyst is disposed on a large pore support and wherein the catalyst on the large pore support has a pore volume in which at least 20% of the pore volume is composed of pores in the size range of 0.1 to 300 microns.
- **24**. The method of claim **16** wherein temperature is maintained at less than about 270° C.
- **25**. The method of claim **22** wherein temperature is maintained at less than about 270° C.
- 26. The method of claim 16 wherein and comprising passing reactants through the microchannel at a gas hourly space velocity of at least $3000\,h^{-1}$ and converting at least 20% of the CO into products with a selectivity to C_2^+ oxygenates of at least 40%.
- 27. The method of claim 18 wherein and comprising passing reactants through the microchannel at a gas hourly space velocity of at least $3000 \, h^{-1}$.